Rings of Regular Functions on Spherical Nilpotent Orbits for Complex Classical Groups

نویسندگان

  • Tonghoon Suk
  • David Alexander Vogan
چکیده

Let G be a classical group and let g be its Lie algebra. For a nilpotent element X E g, the ring R(Ox) of regular functions on the nilpotent orbit Ox is a Gmodule. In this thesis, we will decompose it into irreducible representations of G for some spherical nilpotent orbits. Thesis Supervisor: David Alexander Vogan Title: Professor of Mathematics

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Maximal Tori Using LiE and Mathematica

This paper describes an algorithm for computing maximal tori of the reductive centralizer of a nilpotent element of an exceptional complex symmetric space. It illustrates also a good example of the use of Computer Algebra Systems to help answer important questions in the field of pure mathematics. Such tori play a fundamental rôle in several problems such as: classification of nilpotent orbits ...

متن کامل

Classification of Spherical Nilpotent Orbits in Complex Symmetric Space

Let G be the adjoint group of the simple real Lie algebra g , and let K C → Aut(p C ) be the complexified isotropy representation at the identity coset of the corresponding symmetric space. We classify the spherical nilpotent K C orbits in p C .

متن کامل

Regular Orbits of Symmetric Subgroups on Partial Flag Varieties

The main result of the current paper is a new parametrization of the orbits of a symmetric subgroup K on a partial flag variety P . The parametrization is in terms of certain Spaltenstein varieties, on one hand, and certain nilpotent orbits, on the other. One of our motivations, as explained below, is related to enumerating special unipotent representations of real reductive groups. Another mot...

متن کامل

Spherical Nilpotent Orbits and the Kostant-sekiguchi Correspondence

Let G be a connected, linear semisimple Lie group with Lie algebra g, and let KC → Aut(pC ) be the complexified isotropy representation at the identity coset of the corresponding symmetric space. The Kostant-Sekiguchi correspondence is a bijection between the nilpotent KC -orbits in pC and the nilpotent G-orbits in g. We show that this correspondence associates each spherical nilpotent KC -orbi...

متن کامل

Nilpotent Orbits: Geometry and Combinatorics

We review the geometry of nilpotent orbits, and then restrict to classical groups and discuss the related combinatorics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010